
 

 

Meta-analyses of partial correlations are biased: Detection and solutions 

T. D. Stanley*, Hristos Doucouliagos*, and Tomas Havranek*** 

Abstract 

We demonstrate that all meta-analyses of partial correlations are biased, and yet hundreds of meta-

analyses of partial correlation coefficients (PCC) are conducted each year widely across 

economics, business, education, psychology, and medical research. To address these biases, we 

offer a new weighted average, UWLS+3. UWLS+3 is the unrestricted weighted least squares 

weighted average that makes an adjustment to the degrees of freedom that are used to calculate 

partial correlations and, by doing so, renders trivial any remaining meta-analysis bias. Our 

simulations also reveal that these meta-analysis biases are small-sample biases (n < 200), and a   

simple correction factor of (n-2)/(n-1) greatly reduces these small-sample biases along with 

Fisher’s z. In many applications where primary studies typically have hundreds or more 

observations, partial correlations can be meta-analyzed in standard ways with only negligible bias. 

However, in other fields in the social and the medical sciences that are dominated by small 

samples, these meta-analysis biases are easily avoidable by our proposed methods.  
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Highlights 

What is already known? 

• All meta-analyses of partial correlation coefficients (PCCs) are biased, though the biases are 

relatively small in most cases. 

• Hundreds of meta-analyses of PCCs are conducted each year. 

What is new? 

• We offer two new corrections, UWLS+3 and REss, that widely reduce these biases to scientific 

negligibility.  

• Fisher’s z transformations also produce small-sample biases, although they are generally 

negligible in application.  

• UWLS+3 is the unrestricted weighted least squares weighted average that adjusts the degrees 

of freedom.  It is generally less bias than meta-analyses that transform PCCs to Fisher’s z. 
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1. INTRODUCTION 

Hundreds of meta-analyses of partial correlation coefficients (PCCs) are conducted each year 

widely across economics, business, education, psychology, and medical research.i Some 

researchers consider partial correlations to be the preferred effect size to summarize multiple 

regressions.1 Others recommend using partial correlations as a last resort when different measures 

of the dependent variable and/or the independent variable of interest are routinely employed in the 

relevant area of research.2  

It is widely known that individual correlation estimates, and PCCs, are biased downward 

(e.g., Olkin and Pratt).3  Recently, Stanley and Doucouliagos uncover the counterintuitive result 

that all meta-analyses of PCC are, in contrast, biased upward.4 That is, all meta-analyses of PCCs 

are biased regardless of whether fixed effect (FE), random effects (RE), or the unrestricted 

weighted least squares (UWLS) weighted average are employed and in the absence of any 

publication selection bias.ii In this paper, we offer novel small-sample corrections that render any 

remaining meta-analysis biases of PCCs scientifically trivial. 

 

2. PARTIAL CORRELATION COEFFICIENTS 

Across many disciplines, multiple regressions are employed to evaluate the effect of a treatment, 

condition, or variable upon some outcome of interest after controlling for other, potential 

contaminating, effects or obscuring complexities.  Multiple regression can be represented as: 

𝑌𝑖 =  𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖+. . . +𝛽𝑗𝑋𝑗𝑖 + 𝜀𝑖           𝑖 = 1,2, . . . , 𝑛,        (1) 

 
i According to Google Scholar, 4,530 articles were published in 2022 that include the phrases “partial correlation” and 

“meta-analysis”. Of course, not all of these studies are meta-analyses that use partial correlation coefficients. Some 

articles explain why they do not use partial correlations, while others are primary studies or narrative reviews citing 

meta-analyses. However, out of the first 100 hits, 75 are indeed meta-analyses that utilize partial correlations, as 

documented in our online appendix at meta-analysis.cz/pcc. It is probable that the proportion of meta-analyses using 

partial correlations among the Google Scholar hits will decrease further down the list. Nevertheless, even among the 

studies ranked between the 80th and 100th places, more than half are meta-analyses employing partial correlations. 

Hence, we have reason to believe that some hundreds of meta-analyses conducted in 2022 utilized partial correlations. 
ii The unrestricted weighted least squares (UWLS) weighted average has been shown to have better statistical 

properties than RE when there is publication selection bias or when heterogeneity is correlated with sample size (or 

SE), which meta-research evidence finds in psychology.14-16 Recently, UWLS is shown to better represent medical 

research than RE across over 67,000 meta-analyses of approximately 600,000 studies.19  
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where Y is the dependent variable or outcome of interest. Without loss of generalization, we take 

𝑋1 as the primary variable of interest (perhaps a dichotomous variable representing treatment). The 

other Xs are independent variables that are thought to affect the outcome. Subscript i represents an 

induvial observation in a primary study (a consumer, an individual subject, a geographical region 

etc.), j is the total number of independent variables, and 𝜀𝑖 represent sampling errors and other 

residuals.  

 Multiple regression is used with observational data, quasi-experiments, and experimental 

designs when additional experimental conditions or pre-treatment subject characteristics need to 

be considered. For our purposes, the strength of the experimental design is not relevant as long as 

the focus of the meta-analysis is upon the estimated multiple regression coefficient, �̂�1, across the 

research literature. However, in some cases, observational multiple regressions can offer strong 

research designs.5  

 The partial regression coefficient, �̂�1, is not a standardized effect. It is measured in units of 

Y per a one unit increase in 𝑋1. Any change in the measure, metric, or scale of either 𝑋1 or Y from 

one study to the next will render the respective estimates of �̂�1 uncomparable.  Partial correlation 

coefficients solve this problem. PCCs have the same statistical properties and interpretation as 

simple bivariate correlations after the effects of 𝑋2, 𝑋3, . . . , 𝑋𝑗 have been eliminated.6 Simple 

bivariate Pearson correlations are often employed as effect sizes in meta-analysis, and partial 

correlations come with the same advantages and limitations.  

 Gustafson mathematically derived a convenient formula that converts any partial 

regression coefficient, �̂�1, into a partial correlation coefficient, 𝑟𝑝: 

 

𝑟𝑝 = 𝑡
√𝑡2 + 𝑑𝑓⁄  ,             (2) 

 

where 𝑡 =  
�̂�1

𝑠�̂�1

 is the conventional t-test for the statistical significance of 𝑋1 in the explanation of 

Y, and  𝑑𝑓 = 𝑛 − 𝑗 − 1 are the degrees of freedom available to the multiple regression, eq. (1).7  

𝑟𝑝 can be interpreted as a standardized regression coefficient that estimates the number of standard 

deviations that Y increases when 𝑋1 increases by a one standard deviation, holding all other 
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variables constant, and 𝑟𝑝
2  is the proportion of the variation in Y attributable to variation in 𝑋1 after 

eliminating the effects of 𝑋2, 𝑋3, . . . , 𝑋𝑗. Because economics, business, and social sciences, in 

general, often use different scales and measures for Y and/or 𝑋1, PCCs are frequently employed in 

the meta-analysis of these fields.2,8,9   

 The variance of 𝑟𝑝 is: 

     𝑆1
2 =

(1 − 𝑟𝑝
2)

2

𝑑𝑓
⁄   ,          (3) 

 

as derived in Olkin and Siotani.1, 10, 11  

However, the test of PCC’s statistical significance, H0:  = 0, requires a slightly different 

formula for the variance of 𝑟𝑝: 

 

     𝑆2
2 =

(1 − 𝑟𝑝
2)

𝑑𝑓
⁄    ;        (4) 

 

where  is the population partial correlation coefficient.11,12 Otherwise, the test of statistical 

significance of the partial correlation would give an illogical and different result than the test of 

the statistical significance of the partial regression coefficient from which this PCC is derived.2  

Levy and Narula show that the more complex variance formula, 𝑆1
2, reduces to 𝑆2

2  when  = 0.11,12  

These two formulae for 𝑟𝑝’s variance only differ in that the numerator of 𝑆2
2 is not squared. Since, 

by definition, -1< 𝑟𝑝 < 1, it follows that  𝑆1
2 < 𝑆2

2 for all |𝑟𝑝| ≠ {0 or 1}. Using 𝑆2
2  and 𝑟𝑝 reproduces 

the t-value and the p-value of the original estimated partial regression coefficient, �̂�1; 𝑆1
2 does not.   

 Below we demonstrate that all meta-analyses of PCCs are biased (including FE, RE, and 

UWLS) regardless of which formula of variance is used. Nevertheless, conventional meta-analyses 

that use 𝑆1
2 cause the estimates of mean effect to be twice as biased as those which employ 𝑆2

2. To 

address these biases, we offer a simple modification to the transformation formula, eq. (2), and a 

second small-sample bias correction for degrees of freedom. First, however, we establish and 

discuss the bias of the conventional meta-analysis of PCCs. It is only through understanding these 

biases that a solution can be found. 
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3. META-ANALYSIS BIAS 

3.1 Simulations 

To investigate the statistical properties of the meta-analysis of partial correlations, we conduct 

Monte Carlo simulations of RE and UWLS estimates of the mean PCC from randomly generated 

data, which is used to estimate multiple regressions and transform each �̂�1 to a PCC. Simulations 

offer an important advantage over other approaches in that we can set the ‘true’ population value 

of the PCC, , by forcing its value upon the data generating process.  

To obtain estimated PCCs for the effect size corresponding to the variable, 𝑋1, we start with 

the following multiple regression: 

 

𝑌𝑖 =  𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝜀𝑖 𝑖 = 1,2, . . . , 𝑛         (5) 

n is set at {25, 50, 100, 200, or 400} but held constant for a given simulation to identify and 

understand the resulting small-sample biases. For simplicity, we set all betas to 1 and assume that 

𝑋1𝑖, 𝑋2𝑖 , and  𝜀𝑖 are independently and identically distributed as N(0,1).iii The variable, 𝑌𝑖, is 

generated by eq. (5) after random and independent values are generated for 𝑋1𝑖, 𝑋2𝑖, and  𝜀𝑖. As a 

next step, we estimate a multiple regression for eq. (5) and calculate the t-value of the estimated 

regression coefficient 𝛽1. We then convert 𝑋1
′ 𝑠 t-value to a PCC via eq. (2). 

 Due to the clarity and simplicity of these data generating processes, the population variance 

of 𝑌𝑖 not attributed to the remaining independent variables, 𝑋2𝑖, equals 2 because this variance can 

be computed as the sum of the variances of 𝑋1𝑖 and 𝜀𝑖, each of which is set to have variance 1. 

Both 𝑋1𝑖 and 𝜀𝑖 are independently distributed with variance 1; hence, this total variance is the sum 

of 𝑋1𝑖 and 𝜀𝑖 variances. Thus, the ratio of 𝑌𝑖
′𝑠 remaining variance explained by 𝑋1𝑖 is ½, leading 

to  = √½ or 0.707107.   This result also follows from Gustafson where  𝑟𝑝
2  is shown to be:  

�̂�1
2

(�̂�1
2 + 𝑑𝑓 ∙ 𝑆

�̂�1

2 )
⁄ .5  Recall that 𝛽1 is set to 1,  𝑆

�̂�1

2 = (𝜎2 𝑑𝑓 ∙ 𝜎
𝑋1

2⁄ ),13 and both 𝜎2 and 𝜎
𝑋1

2  are 

set to 1 by design; thus, again  2 = ½. In other simulation experiments, we set  equal to a 

 
iii We also simulate more complex multiple regression with 4, 6, and 10 independent variables. Results from these 

more complex multiple regressions are practically equivalent and are reported below and in the Supplement.  



 

 

5 

 

‘medium’ effect size (  = sqrt(.1) = .3162) by dividing 𝑋1𝑖 
′ 𝑠 randomly generated N(0,1) by 3 and 

a ‘small’ effect size (  = sqrt(1/82) = .1104) by dividing by 9.  Doing so makes 𝑋1𝑖
′ s variance 

equal to 1/9 and 1/81, respectively while leaving the error variance at 1—see Table 1. 

For each study in our simulations, all the data in eq. (5) is randomly generated, the multiple 

regression, eq. (5), and its coefficients are estimated, and 𝑟𝑝 is calculated from eq. (2).  𝑆1
2 is then 

calculated from eq. (3) and 𝑆2
2 from eq. (4), and all these calculations are repeated 50 times to 

represent one meta-analysis.iv For each meta-analysis of 50 estimated PCCs, the RE and the UWLS 

weighted averages are calculated in two ways by using 𝑆1
2 and 𝑆2

2.  

UWLS estimates the simple meta-regression coefficient, , from: 

𝑡𝑘 =
𝑟𝑝𝑘

𝑆𝐸𝑘

= 𝛼1 (
1

𝑆𝐸𝑘

) + 𝑢𝑘           k =1, 2, . . . , 50        (6) 

k is the number of PCCs combined into the meta-analysis; k is often called the number of studies. 

In the supplement, we also report the results for the simulation designs that correspond to Tables 

2 and 4 but with k={10; 200} to ensure robustness. 𝑆𝐸𝑘 is calculated as the square root of either 

𝑆1
2 or 𝑆2

2 from their respective formulae above. Any common statistical software automatically 

calculates UWLS, �̂�1 , its standard error, test statistic, and confidence intervals. UWLS and the 

fixed effect (FE) must have identical point estimates, but UWLS automatically adjusts its standard 

errors and confidence intervals for heterogeneity when present.14,15 We do not assume a common 

effect but instead allow for random, additive heterogeneity (Section 3.3, below); thus, FE is not an 

appropriate model for these simulations. Previous simulations have shown that UWLS is 

statistically superior to RE if there is selection for statistical significance or if small studies are 

more heterogeneous than larger studies.14,16 In other cases where RE’s model is imposed upon the 

simulations, the differences between UWLS’ and RE’s statistical properties are negligible. For 

each randomly generated meta-analysis, the bias, RMSE (square root of the mean squared error) 

 
iv These biases are largely independent of the number of PCCs (k) in the meta-analysis, but very dependent on the 

sample size (n) of the primary study. Stanley and Doucouliagos used other values of k and found that meta-analyses 

of 10 or fewer studies consistently have slightly smaller biases while those with a larger number of estimates (k = 200) 

have slightly larger biases. Thus, the pattern and size of these small-sample biases are largely independent of the 

number of PCCs (k) in the meta-analysis.4  
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and coverage rates of RE and UWLS are calculated and then averaged across 10,000 replications 

of all these steps. See the Supplement for the simulation code.  

Table 1 reports the results of these simulations using both versions of PCC’s variance—

eq. (3) and eq. (4). Using either RE or UWLS with 𝑆2
2 consistently produces biases only 50% as 

large as the conventional approach, RE with 𝑆1
2, on average and for most of the individual 

conditions. Table 1 also shows that 𝑆1
2 generates larger root mean squared errors and worse 

coverage (i.e., coverage rates that are often much different than their nominal 95% level) than 𝑆2
2. 

In Section 3.2, below, we discuss the reason for these biases and why 𝑆1
2 produces predictably 

larger biases. These results confirm Stanley and Doucouliagos’ finding that the theoretically 

‘correct’ variance, 𝑆1
2, eq. (3), is not useful in practice when conducting meta-analyses of partial 

correlations.4  

 

3.2      Reducing meta-analysis bias to triviality 

Looking closely at the biases identified through simulations reveals two additional lessons. First, 

although these biases are of a notable magnitude for small samples (n < 50), all these biases are 

mere rounding errors (i.e., < .005) or smaller for large samples (i.e., n > 200 or n > 100 if 𝑆2
2 is 

used). Second, biases consistently halve as n doubles. Figure 1 graphs RE’s and UWLS’ biases 

against the inverse of degrees of freedom (1/df) when  = √½, using 10,000 replications of each 

sample size, n = {10, 20, 40, 80, 160, 320, 640, 1280 & 25, 50, 100, 200, 400, 800, 1600, 2500}. 

Figure 1 reveals that 𝑆2
2 approximately halves RE’s bias and that doubling the sample size of the 

original study halves the bias of each again.    

To be more precise, the biases of UWLS with inverse 𝑆2
2 weights are a near exact function 

of the inverse of degrees of freedom (1/df):   

 

   𝐵𝑖𝑎𝑠𝑖 =  .000069 + .508 (
1

𝑑𝑓𝑖
)            (7) 

       t    =    (1.67)      (505.8)  ;  R2 = .9999453 

 

The values in parentheses are the t-values for the estimated regression intercept and slope 

coefficients, respectively; values greater than 2.145 are statistically significant at the .05 level (t-

values with df=14).  The inverse of degrees of freedom, (
1

𝑑𝑓𝑖
), explains over 99.99% of the bias of 
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UWLS (R2 ≈ 99.995%) leaving a 95% margin of error of .0003.  Through numerical analysis, we 

know that the bias of the meta-analysis of PCCs is a function of the inverse df, and that any 

remaining error is negligible.  

A century ago, Fisher observed that the: “sampling distribution of the partial correlation 

obtained from n pairs of values, when one variable is eliminated, is the same as the random 

sampling distribution of a total correlation derived from (n-1) pairs. By mere repetition of the 

above reasoning, it appears that when s variates are eliminated the effective size of the sample is 

diminished to (n-s)” (p. 330).6 This suggests that fine-tuning the degrees of freedom in PCC’s 

transformation formula may substantially reduce or practically eliminate this bias. Further 

simulations confirm that this is indeed the case. 

3.2.1  Reducing meta-analysis of PCCs bias to triviality: REss 

Following Fisher’s observation, consider the simple bivariate correlation: 

 

𝑟 =
𝑆𝑥𝑦

𝑆𝑥∙𝑆𝑦
 =

∑(𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)

√∑(𝑋𝑖 − �̅�)2  ∙ √∑(𝑌𝑖 − �̅�)2
⁄   .         (8) 

 

The sample covariance, 𝑆𝑥𝑦, has degrees of freedom (n-2), because two parameters, 𝜇𝑥 and 𝜇𝑦, 

must be first estimated from a sample of n pairs of observations. Each sample variance, 𝑆𝑥
2 and 

𝑆𝑦
2, has (n-1) has degrees of freedom; thus, the denominator is (n-1).  This suggests that a correction 

for degrees of freedom, (n-2)/(n-1), might reduce the small-sample bias of meta-analysis weighted 

averages that is revealed in Table 1. When the small-sample bias is proportional to 1/df and df = 

(n-1) multiplying by (n-2)/(n-1) should reduce or correct this small-sample bias. Table 2 reports 

the random-effects, small-sample correction, REss, where each sample PCC is first multiplied by 

(n-2)/(n-1) before the usual random-effects formulae are applied.  REss greatly reduces the small-

sample biases—compare Tables 1 and 2. 

These small-sample corrections of PCCs, however, should not be applied to individual 

stand-alone PCCs because it is widely known that individual correlation estimates, and PCCs, are 

biased downward.3 Applying this small-sample adjustment to stand-alone PCCs would then only 

make a small downward bias worse. Rather, they should be used only as an intermediate step in 
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the calculations of meta-analysis weighted averages of PCCs.  We propose employing these small-

sample corrections, (n-2)/(n-1) and UWLS+3 (see below) only in the calculations of meta-analysis 

weighted averages of PCCs. This small sample correction could be applied to UWLS as well, but 

we have found a better and more direct way to adjust degrees of freedom for UWLS—UWLS+3. 

 

3.2.2  Reducing meta-analysis of PCCs bias to triviality: UWLS+3 

As shown above, eq. (7), the biases of these meta-analysis estimators are nearly an exact function 

of the inverse degrees of freedom. Note further that df is in the denominator of Gustafson’s PCC 

transformation formula, eq. (2), making all PCCs an inverse function of the degrees of freedom.  

This suggests that a simple adjustment of df in eq. (2) might provide a solution. Numerical analysis 

finds that adding 3 to df successfully reduces these small-sample biases to scientific triviality.  We 

call the resulting transformed weighted average ‘UWLS+3.’ 

 UWLS+3 substitutes degrees of freedom that are three larger than the multiple regression’s 

degrees of freedom into PCC’s transformation formula, eq. (2).  That is, UWLS+3 calculates PCCs 

as: 

𝑟𝑝 = 𝑡
√𝑡2 + 𝑑𝑓+3

⁄              (9) 

 

for 𝑑𝑓+3 = 𝑛 − 𝑠 + 1 with s as the number of independent variables in the multiple regression held 

constant in the calculation of the partial correlation of interest (i.e., 𝑠 = 𝑗 − 1). We do not 

recommend that this transformation be used in conjunction with random effects, as this produces 

worse statistical properties in some conditions.  

 

3.2.3  Simulation findings 

UWLS+3 employs the same simulation design as before; however, it replaces the degrees of 

freedom in the partial correlation coefficient's transformation formula with values that are three 

units greater than the degrees of freedom in the multiple regression. As displayed in Table 2, 

UWLS+3 eliminates all biases to within < +.001, and its average absolute bias is only .0002.  REss 

also greatly reduces these biases, but not to the extent that UWLS+3 does, nor are REss coverages 

as close to 95% as are UWLS+3’s. Table 2 assumes that either there are two independent variables 
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in the multiple regression (𝑗 = 2) or four ( 𝑗 = 4).  To ensure broader generalizability, Supplement 

Table S1 reports the same simulation design as Table 2, except j = 6 &10.  Induction suggests that 

if you can prove trivial bias for one (i.e., s =1; Table 2) and trivial bias for some random s (e.g., s 

= 3), then trivial biases generalize to any s (e.g., s = {5, 9}, Table S1). As a further corroboration 

of the effective elimination of meta-analysis bias, Table S2 reports the same simulation design but 

with different values of the population partial correlation coefficient,  ={.9487; .2425; 0}. Also 

note Table S3 where the same simulation design is reported but with different numbers of PCCs, 

k={10; 200}. In all cases, these adjustments drive the small-sample biases to scientific negligibility 

and their relative evaluations remain unchanged.  

 Now that we have found ways to reduce these biases to scientific triviality, what causes 

these biases of the conventional meta-analysis of partial correlations? The simple answer is that 

both formulas for the variance of PCCs are themselves a function of the PCC. Because the weights 

of meta-analysis are a strictly increasing function of 𝑟𝑝
2, it follows that for all 𝑟𝑝

2≠ {0 or 1} positive 

sampling errors are assigned more influence on the meta-analysis estimate compared to negative 

sampling errors of the same magnitude. In all meta-analyses that use inverse variance weights, 

based on either 𝑆1
2 or 𝑆2

2, an upwards bias in magnitude will arise: the absolute expected value 

delivered by the meta-analysis will surpass |  | if the true correlation is not 0 or 1.  

Let us assume, for instance, that  = 0.7 and examine how estimates with errors of the same 

magnitude but different signs ( + 0.2) are weighted in meta-analysis.  For 𝑆2
2, an UWLS estimate 

with a sampling error of +0.2 is assigned a weight proportional to 1/.19 = 5.26, in stark contrast to 

1/.75 = 1.333 for a -0.2 sampling error.  Here estimates with positive errors are assigned nearly 4 

times more influence than estimates with negative errors but equal in size.  Few sampling errors 

will in practice be as large as + 0.2, but the aforementioned principle of asymmetric weighting as 

the source of bias in conventional meta-analysis of partial correlations holds in general: for all 

sizes of sampling errors and various meta-analysis estimators. Because RE’s weights are the 

inverse of the sampling variance plus a positive constant (2), this asymmetric weighting of 

sampling errors is moderated, but not eliminated, by RE. Table 1 shows that RE’s biases are 

somewhat smaller than UWLS’, just as we would expect, and these differences are especially clear 

for small samples when 𝑆1
2 is used. Asymmetric weighting of sampling errors biases weighted 

averages upwards in magnitude. Table 1 confirms these biases.  
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For bivariate correlations, this issue that the variance is a function of the effect size and that 

this may be problematic for meta-analysis is widely known. The conventional solution is to convert 

correlations to Fisher z’s, calculate the meta-analysis estimate of the mean and its related statistics, 

then convert these terms of Fisher z back to correlations for the purpose of interpretation.17 As 

Fisher noted, what is true for correlations is true for partial correlations after degrees of freedom 

are adjusted for the number of variables eliminated, s.6 Tables 2, S1-S3 also report the biases, 

RMSEs, and coverage rates for random effect estimates of Fisher’s z that have been converted 

back to PCCs.  Using Fisher’s z eliminates most of these small-sample biases. Its biases and MSEs 

are nearly the same as the simple RE correction for small-sample bias. However, in all cases and 

by all criteria, UWLS+3, has better statistical properties than either Fisher’s z or REss (Table 2). 

Although Fisher’s z and REss produce biases larger than rounding error only for small samples and 

medium or larger correlations, UWLS+3’s bias is still ten times smaller, see Figure 2. Likewise, 

UWLS+3’s RMSEs are smaller, and its coverage rates are closer to the nominal 95% than Fisher’s 

z or REss. In fact, REss CIs are too narrow for large PCCs. Practically speaking, however, all three: 

Fisher’s z, REss, and UWLS+3 solve this problem of biased meta-analyses of partial correlations in 

the vast majority of cases even though UWLS+3 is slightly better. 

 

3.3      Heterogeneity  

Notable heterogeneity across studies within an area of research is common in all disciplines. In 

psychology, for example, the observed variance from study-to-study is about 4 times larger than 

what reported standard errors imply (i.e., median I2 = 74%).18 To ensure that partial correlation’s 

biases are robust to heterogeneity, we have modified the same simulation design to produce 

heterogeneity at levels seen in psychology. Tables 3 and 4 report the same simulations as Tables 

1 and 2, except that random heterogeneity is added to each study’s estimated correlation in each 

meta-analysis. We first convert each randomly generated estimated PCC to Cohen’s d, add a 

random normal deviation with mean zero and standard deviation {.5, .3, .2d} as  is: {0.7071, 0. 

3162, 0.1104}, and, lastly, transform this back to a partial correlation. That is, the simulations fix 

tau to be {.5, .3, .2d} as  is: {0.7071, 0. 3162, 0.1104}. We transform to Cohen’s d in this way to 

produce random heterogeneity consistent with the random-effect model and to reproduce roughly 

the same distribution of heterogeneity as seen in psychology, in both absolute terms (d) and 
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relatively (I2).v Table 3 shows that the biases of the meta-analysis of correlations remain, while 

Table 4 confirms that Fisher’s z and the small-sample corrections introduced here consistently 

reduce these biases to scientific negligibility.  

 

4. DISCUSSION 

Meta-analyses of partial correlation coefficients (PCC) are generally biased. We offer new 

solutions: UWLS+3 and the small-sample correction, REss. Although these biases are ubiquitous, 

the good news is that they practically and scientifically disappear when the primary studies employ 

larger samples (n > 200). Thus, these biases will typically not be a notable factor in the meta-

analysis of econometric studies in economics and finance, which often involve hundreds of 

observations or more.vi Nonetheless, for many areas of education, business, psychology, medicine 

and health, meta-analysts should use UWLS+3, REss, or Fisher’s z in the meta-analysis of PCCs.  

 An important limitation to our study is that the primary research literatures will typically 

be much richer than what our simulations have assumed. We abstract from such complexities to 

isolate and detect these biases and then to understand their underlying cause. However, many meta-

analyses will include some studies which may be sufficiently large to have negligible bias, which 

will likely moderate the biases of these weighted averages. Thus, in most social science 

applications, it is unlikely that the bias of the meta-analysis of partial correlation coefficients will 

be as large as those revealed here in small samples.  

Both UWLS+3 and REss are easy to implement. To calculate UWLS+3, meta-analysts merely 

need to add 3 to df in PCC’s transformation formula, eq. (2), and use the formula that calculates 

PCC’s variance, 𝑆2
2, eq. (4).  UWLS+3 is the simple regression coefficient, eq. (6), and it can be 

estimated using any regression software. Note that UWLS’ regression does not have an intercept 

 
v Generating heterogeneity though random variations to X1’s regression coefficient, 𝛽1=1 + N(0, .2) produces 

approximately same overall results as Table 3 and Table 4. 
vi Across 358 economic meta-analyses about 2/3rds of 174,542 estimates are computed from sample sizes larger than 

200.20 
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(or a ‘constant’). Aside from small improvements to bias, MSE, and coverage rates over Fisher’s 

z,vii UWLS+3’s advantage lies in its computational simplicity and the clarity of its interpretation.  

Unlike the meta-analysis of Fisher’s z, UWLS+3 is a partial correlation and can be 

understood entirely as such. Neither UWLS+3 nor REss need to be transformed back to a correlation 

to be interpretable. This is particularly helpful for multiple meta-regression analysis (MRA). In 

economics applications, meta-analyses of PCCs are common and frequently involve a dozen or 

more moderator variables. To understand the impact of important MRA coefficients, it is necessary 

to interpret them in terms of the effect size studied, in this case partial correlation coefficients. 

When Fisher’s zs are the object of meta-analysis and MRA, it is easy to misinterpret MRA results 

as correlations. With multiple MRA, the inverse Fisher’s z transformation, PCC = 𝑒
[

2∙𝑍−1

 2∙𝑍+1
]
, would 

need to be separately employed multiple times if Fisher’s zs are meta-analyzed. 

Computational simplicity and clarity of interpretation are also advantages of REss. When 

there is little or no heterogeneity, Table 2, UWLS+3 dominates both Fisher’s z and REss. However, 

REss has a limitation not seen in either UWLS+3 or Fisher’s z. When the ‘true’ correlation is very 

large,  = .9487, REss has notably larger biases than either UWLS+3 or Fisher’s z. However, we 

have not seen average PCCs as large .7 in any economics meta-analysis,viii and no bivariate average 

correlation (RE) has an absolute value larger than .6 among the 108 Psychological Bulletin meta-

analyses.18  

 

V.  CONCLUSION 

We find that all meta-analyses of partial correlations are biased, and we offer simple remedies for 

these biases, UWLS+3 and REss. Both make a simple adjustment to the degrees of freedom used to 

calculate partial correlations and thereby render trivial any remaining bias. UWLS+3 generally 

outperforms REss and the more cumbersome application of Fisher’s z, but all three reduce bias to 

trivial magnitudes in the great majority of practical applications. Our simulations also reveal that 

all biases are small-sample biases (n < 200). Thus, in applications where primary studies typically 

 
vii When there is heterogeneity and a relatively large number of studies (k=200), Fisher’s z and UWLS+3 have 

virtually the same statistical properties—see Table S4.    
viii Among 151 meta-analyses of partial correlations for which we have data, the UWLS estimate ranges from -0.45 

to 0.55. The median absolute UWLS is 0.021.20  
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have hundreds and even more observations, PCCs can be meta-analyzed in any of the above ways 

without notable bias. However, for many fields in the social and the medical sciences where small-

sample studies dominate, these small-sample biases are easily avoidable by employing UWLS+3, 

REss, or Fisher’s z. 
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FIGURE 1: Biases of random-effects and the unrestricted weight least square. Each point 

represents an average bias across 10,000 replications. RE1bias is random effects’ bias that use PCC 

variance, 𝑆1
2, from eq. (3). UWLS2bias is UWLS’ bias using 𝑆2

2  from eq. (4). 
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FIGURE 2: Biases of the meta-analysis of Fisher’s z converted back to PCC (Z Bias), the 

unrestricted weight least squares with 3 additional degrees of freedom (UWLS+3), and the 

random-effect’s estimate of the mean, REss, using 𝑆2
2, from eq. (3) and the small-sample 

adjustment (n-2)/(n-1) for  = √½ and 10,000 replications.  See Table 2 and its discussion. 
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Table 1: The meta-analyses of PCCs (RE and UWLS) using different formulae for PCC’s variance 

Notes:  is the ‘true’ population mean partial correlation coefficient (PCC).  n is the sample size used in the primary study’s multiple regression. Bias is the difference between the meta-analysis estimate 

and  calculated from 50 estimated partial correlation coefficients and averaged across 10,000 replications. RMSE is the square root of the mean squared error.  Coverage is the proportion of 10,000 

meta-analyses’ 95% confidence intervals that contain . RE is the random-effect’s estimate of the mean, and UWLS is the unrestricted weighted least squares’ estimate of the mean. The subscripts (1 

and 2) refer to the use of either the PCC variance, 𝑆1
2, from eq. (3) or 𝑆2

2 from eq. (4) to calculate the RE and UWLS weighted averages. 

 

  

Design Bias RMSE Coverage 

 n RE1 RE2 UWLS1 UWLS2 RE1 RE2 UWLS1 UWLS2 RE1 RE2 UWLS1 UWLS2 

.7071 25 .0455 .0233 .0540 .0233 .0478 .0278 .0568 .0278 .1428 .8521 .0588 .3787 

.7071 50 .0223 .0108 .0254 .0108 .0245 .0149 .0277 .0149 .4103 .9497 .2954 .5928 

.7071 100 .0111 .0053 .0125 .0053 .0131 .0088 .0145 .0088 .6619 .9796 .5788 .7136 

.7071 200 .0055 .0026 .0061 .0026 .0075 .0057 .0080 .0057 .8109 .9878 .7714 .7734 

.7071 400 .0028 .0013 .0031 .0013 .0045 .0038 .0048 .0038 .8824 .9911 .8585 .8025 

.3162 25 .0347 .0173 .0490 .0194 .0461 .0336 .0591 .0348 .7358 .8987 .5843 .8312 

.3162 50 .0179 .0083 .0216 .0089 .0265 .0208 .0295 .0211 .8327 .9329 .7810 .8900 

.3162 100 .0091 .0042 .0104 .0045 .0161 .0138 .0170 .0139 .8892 .9469 .8714 .9118 

.3162 200 .0045 .0020 .0050 .0022 .0102 .0093 .0105 .0093 .9246 .9612 .9127 .9278 

.3162 400 .0022 .0009 .0024 .0010 .0068 .0065 .0069 .0065 .9424 .9599 .9339 .9349 

.1104 25 .0134 .0065 .0198 .0079 .0360 .0321 .0412 .0328 .9114 .9413 .8771 .9234 

.1104 50 .0073 .0034 .0088 .0039 .0225 .0208 .0234 .0210 .9332 .9517 .9246 .9410 

.1104 100 .0034 .0015 .0040 .0017 .0150 .0144 .0152 .0145 .9431 .9532 .9362 .9430 

.1104 200 .0017 .0007 .0019 .0008 .0102 .0100 .0103 .0100 .9495 .9548 .9424 .9468 

.1104 400 .0009 .0005 .0010 .0005 .0071 .0070 .0071 .0070 .9596 .9623 .9533 .9535 

Average .0122 .0059 .0150 .0063 .0196 .0153 .0221 .0155 .7953 .9482 .7520 .8310 
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Table 2: REss, REz, and UWLS+3 meta-analyses of partial correlations 

Notes:  is the ‘true’ population mean partial correlation coefficient (PCC).  n is the sample size used in the primary study’s multiple regression. Bias is 

the difference between the meta-analysis estimate and  calculated from 50 estimated partial correlation coefficients and averaged across 10,000 

replications. RMSE is the square root of the mean squared error.  Coverage is the proportion of 10,000 meta-analysis 95% confidence intervals that 

contain . REss is the random-effect’s estimate of the mean using 𝑆2
2, from eq. (3) and the small-sample adjustment (n-2)/(n-1). UWLS+3 is the 

unrestricted weighted least squares’ estimate of the mean using 𝑆2
2 from eq. (4) and df+3 as the degrees of freedom in PCC’s formula.  REz is the random-

effect’s estimate of Fisher’s z converted back to PCC.  aAverage biases are averages across the absolute values of the biases. Biases reported as ‘.0000’ 

are < |+.00005|.  

  

 

 

2 IVs:  Partial Correlation of 𝑿𝟏 from  𝒀𝒊 =  𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊 + 𝜷𝟐𝑿𝟐𝒊 + 𝜺𝒊    

Design Bias RMSE Coverage 

 n REss REz UWLS+3 REss REz UWLS+3 REss REz UWLS+3 

.7071 25 -.0070 .0078 .0009 .0161 .0168 .0155 .9891 .9281 .9431 

.7071 50 -.0037 .0036 .0001 .0107 .0109 .0105 .9914 .9460 .9511 

.7071 100 -.0019 .0017 -.0001 .0075 .0073 .0072 .9923 .9530 .9514 

.7071 200 -.0010 .0008 -.0001 .0051 .0051 .0051 .9938 .9539 .9503 

.7071 400 -.0004 .0004 .0000 .0035 .0036 .0036 .9953 .9551 .9480 

.3162 25 .0050 .0067 .0008 .0281 .0284 .0275 .9516 .9492 .9408 

.3162 50 .0017 .0032 .0003 .0188 .0190 .0187 .9569 .9519 .9458 

.3162 100 .0008 .0014 .0000 .0129 .0131 .0130 .9626 .9553 .9460 

.3162 200 .0005 .0006 -.0002 .0091 .0091 .0091 .9646 .9567 .9482 

.3162 400 .0002 .0004 .0000 .0063 .0064 .0064 .9659 .9556 .9497 

.1104 25 .0016 .0024 .0002 .0306 .0306 .0301 .9478 .9545 .9368 

.1104 50 .0007 .0011 .0000 .0208 .0206 .0203 .9496 .9593 .9481 

.1104 100 .0004 .0007 .0001 .0143 .0143 .0142 .9527 .9584 .9489 

.1104 200 .0003 .0002 -.0001 .0099 .0100 .0100 .9573 .9569 .9485 

.1104 400 .0001 .0001 -.0001 .0069 .0071 .0070 .9609 .9564 .9495 

Average .0017a .0021 .0002a .0134 .0135 .0132 .9688 .9527 .9471 

4 IVs:  Partial Correlation of 𝑿𝟏 from  𝒀𝒊 =  𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊 + 𝜷𝟐𝑿𝟐𝒊 + 𝜷𝟑𝑿𝟑𝒊 + 𝜷𝟒𝑿𝟒𝒊 +  𝜺𝒊 

.7071 25 -.0048 .0083 .0009 .0160 .0163 .0164 .9920 .9284 .9424 

.7071 50 -.0032 .0037 -.0001 .0108 .0107 .0106 .9930 .9434 .9447 

.7071 100 -.0017 .0018 -.0001 .0074 .0073 .0073 .9929 .9513 .9512 

.7071 200 -.0009 .0008 -.0001 .0051 .0050 .0050 .9949 .9554 .9506 

.7071 400 -.0004 .0004 .0000 .0036 .0036 .0036 .9935 .9556 .9490 

.3162 25 .0064 .0063 .0000 .0297 .0289 .0289 .9491 .9520 .9380 

.3162 50 .0020 .0029 -.0001 .0192 .0191 .0191 .9551 .9545 .9456 

.3162 100 .0008 .0014 -.0001 .0131 .0129 .0130 .9606 .9588 .9516 

.3162 200 .0005 .0006 -.0001 .0090 .0091 .0092 .9658 .9592 .9518 

.3162 400 .0002 .0003 -.0001 .0064 .0063 .0065 .9642 .9591 .9554 

.1104 25 .0025 .0029 .0005 .0325 .0312 .0316 .9440 .9553 .9379 

.1104 50 .0010 .0012 .0000 .0212 .0209 .0209 .9508 .9580 .9463 

.1104 100 .0004 .0007 .0001 .0145 .0144 .0145 .9548 .9553 .9473 

.1104 200 .0001 .0002 -.0001 .0102 .0100 .0101 .9508 .9562 .9472 

.1104 400 -.0001 .0001 .0000 .0070 .0071 .0071 .9597 .9543 .9458 

Average .0017a .0021 .0002a .0137 .0138 .0135 .9681 .9531 .9470 
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Table 3: The meta-analyses of PCCs (RE and UWLS) using different formulae for PCC’s variance and with heterogeneity 

Notes:  is the ‘true’ population mean partial correlation coefficient (PCC). Sample sizes as the same as reported in Tables 1 and 2.  0 < I2< 1 is a relative measure of heterogeneity. Bias is the difference 

between the meta-analysis estimate and  calculated from 50 estimated partial correlation coefficients and averaged across 10,000 replications. RMSE is the square root of the mean squared error.  

Coverage is the proportion of 10,000 meta-analyses’ 95% confidence intervals that contain . RE is the random-effect’s estimate of the mean, and UWLS is the unrestricted weighted least squares’ 

estimate of the mean. The subscripts (1 and 2) refer to the use of either the PCC variance, 𝑆1
2, from eq. (3) or 𝑆2

2 from eq. (4) to calculate the RE and UWLS weighted averages. aAverage biases are averages 

across the absolute values of the biases. 

Design Bias RMSE Coverage 

 I2 RE1 RE2 UWLS1 UWLS2 RE1 RE2 UWLS1 UWLS2 RE1 RE2 UWLS1 UWLS2 

.7071 .369 .0385 .0245 .0710 .0270 .0435 .0317 .0736 .0328 .3931 .7546 .0322 .4151 

.7071 .559 .0124 .0068 .0459 .0149 .0214 .0198 .0485 .0216 .7771 .8724 .1362 .6138 

.7071 .731 -.0012 -.0045 .0347 .0095 .0156 .0168 .0374 .0169 .9018 .9143 .2611 .7180 

.7071 .848 -.0086 -.0105 .0292 .0069 .0171 .0184 .0320 .0149 .8657 .8746 .3571 .7586 

.7071 .920 -.0125 -.0136 .0268 .0058 .0190 .0198 .0296 .0140 .7970 .8217 .4035 .7753 

.3162 .404 .0241 .0105 .0601 .0209 .0429 .0355 .0715 .0396 .8424 .9134 .5489 .8360 

.3162 .516 .0087 .0011 .0343 .0109 .0285 .0266 .0445 .0287 .9099 .9354 .7167 .8845 

.3162 .668 .0004 -.0036 .0232 .0064 .0225 .0225 .0330 .0233 .9396 .9396 .8015 .9116 

.3162 .801 -.0038 -.0058 .0184 .0045 .0205 .0209 .0279 .0207 .9459 .9404 .8370 .9224 

.3162 .890 -.0061 -.0071 .0159 .0034 .0202 .0205 .0257 .0198 .9312 .9282 .8543 .9203 

.1104 .319 .0108 .0049 .0217 .0079 .0378 .0346 .0457 .0360 .9182 .9334 .8641 .9168 

.1104 .363 .0049 .0015 .0108 .0037 .0263 .0251 .0293 .0257 .9332 .9398 .9102 .9343 

.1104 .498 .0017 -.0001 .0063 .0019 .0204 .0200 .0221 .0204 .9336 .9352 .9242 .9342 

.1104 .661 .0001 -.0008 .0044 .0012 .0170 .0169 .0182 .0172 .9447 .9448 .9344 .9415 

.1104 .795 -.0010 -.0015 .0032 .0006 .0156 .0156 .0165 .0158 .9435 .9410 .9369 .9419 

Average .0090a .0065a .0271 .0084 .0245 .0230 .0370 .0232 .8651 .9059 .6346 .8283 
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Table 4: REss, REz, and UWLS+3 meta-analyses of partial correlations with heterogeneity 

Notes:  is the ‘true’ population mean partial correlation coefficient (PCC).  The sample sizes of the primary study’s multiple regressions are the 

same as reported in Tables 1 and 2. Bias is the difference between the meta-analysis estimate and  calculated from 50 estimated partial correlation 

coefficients and averaged across 10,000 replications. RMSE is the square root of the mean squared error.  Coverage is the proportion of 10,000 

meta-analysis 95% confidence intervals that contain . REss is the random-effect’s estimate of the mean using 𝑆2
2, from eq. (4) and the small-sample 

adjustment (n-2)/(n-1). UWLS+3 is the unrestricted weighted least squares’ estimate of the mean using 𝑆2
2 from eq. (4) and df+3 as the degrees of 

freedom in PCC’s formulae.  REz is the random-effect’s estimate of Fisher’s z converted back to PCC.  aAverage biases are averages across the 

absolute values of the biases. Biases reported as ‘.0000’ are < |+.00005|.  

2 IVs:  Partial Correlation of 𝑿𝟏 from  𝒀𝒊 =  𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊 + 𝜷𝟐𝑿𝟐𝒊 + 𝜺𝒊    

Design Bias RMSE Coverage 

 I2 REss REz UWLS+3 REss REz UWLS+3 REss REz UWLS+3 

.7071 .369 -.0058 .0024 .0041 .0199 .0199 .0203 .9614 .9404 .9465 

.7071 .559 -.0068 -.0016 .0043 .0192 .0165 .0167 .9110 .9429 .9378 

.7071 .730 -.0113 -.0038 .0043 .0198 .0152 .0149 .8717 .9392 .9397 

.7071 .848 -.0140 -.0046 .0045 .0205 .0145 .0140 .8233 .9340 .9333 

.7071 .919 -.0154 -.0053 .0044 .0210 .0144 .0136 .7897 .9279 .9317 

.3162 .404 -.0004 .0037 .0020 .0333 .0327 .0331 .9305 .9421 .9388 

.3162 .515 -.0049 .0001 .0018 .0265 .0256 .0261 .9328 .9470 .9456 

.3162 .669 -.0068 -.0013 .0022 .0233 .0222 .0226 .9316 .9427 .9447 

.3162 .800 -.0075 -.0022 .0022 .0215 .0204 .0207 .9274 .9398 .9416 

.3162 .890 -.0077 -.0025 .0023 .0204 .0190 .0192 .9270 .9430 .9461 

.1104 .320 .0012 .0018 .0003 .0326 .0334 .0335 .9413 .9461 .9373 

.1104 .364 -.0006 .0005 .0003 .0245 .0248 .0249 .9405 .9427 .9417 

.1104 .500 -.0006 .0001 .0004 .0193 .0199 .0201 .9460 .9415 .9440 

.1104 .661 -.0010 -.0001 .0006 .0167 .0170 .0172 .9449 .9445 .9482 

.1104 .795 -.0014 -.0004 .0004 .0154 .0154 .0155 .9450 .9460 .9506 

Average .0057a .0020a .0023 .0223 .0207 .0208 .9149 .9413 .9418 

4 IVs:  Partial Correlation of 𝑿𝟏 from  𝒀𝒊 =  𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊 + 𝜷𝟐𝑿𝟐𝒊 + 𝜷𝟑𝑿𝟑𝒊 + 𝜷𝟒𝑿𝟒𝒊 +  𝜺𝒊 

.7071 .349 -.0031 .0033 .0044 .0195 .0206 .0209 .9671 .9372 .9422 

.7071 .549 -.0062 -.0016 .0042 .0191 .0165 .0167 .9183 .9459 .9430 

.7071 .726 -.0110 -.0039 .0042 .0195 .0152 .0148 .8738 .9402 .9421 

.7071 .847 -.0139 -.0049 .0043 .0203 .0147 .0140 .8284 .9331 .9367 

.7071 .919 -.0152 -.0050 .0048 .0208 .0141 .0135 .7963 .9325 .9326 

.3162 .398 .0008 .0048 .0025 .0347 .0338 .0342 .9272 .9461 .9386 

.3162 .508 -.0041 .0005 .0021 .0267 .0259 .0264 .9348 .9440 .9433 

.3162 .665 -.0069 -.0016 .0018 .0232 .0222 .0225 .9311 .9425 .9439 

.3162 .800 -.0073 -.0019 .0025 .0213 .0202 .0205 .9323 .9454 .9465 

.3162 .889 -.0081 -.0023 .0026 .0207 .0192 .0195 .9262 .9413 .9433 

.1104 .323 .0012 .0020 .0004 .0344 .0346 .0346 .9392 .9473 .9365 

.1104 .358 -.0001 .0007 .0004 .0247 .0251 .0252 .9410 .9437 .9421 

.1104 .495 -.0010 .0005 .0009 .0199 .0198 .0200 .9392 .9446 .9462 

.1104 .658 -.0011 -.0005 .0002 .0167 .0171 .0173 .9403 .9390 .9431 

.1104 .794 -.0014 -.0004 .0005 .0153 .0154 .0156 .9451 .9410 .9457 

Average .0054a .0023a .0024 .0224 .0209 .0210 .9160 .9416 .9417 


